Exercice 1

Comparer la quantité de chaleur nécessaire pour élever la température d'une quantité d'eau de 0 °C à 100 °C avec la quantité de chaleur nécessaire pour vaporiser cette quantité d'eau.

Exercice 2

Une masse de 500 g de plomb est chauffée à 150° C, et placée sur un bloc de glace à 0° C . Trouver la masse de la glace qui a fondu.

Exercice 3

Déterminez la quantité de chaleur transmise par conduction à travers un mur de 4 m² de briques d'épaisseur 15 cm pendant une heure, si la température intérieure est 20°C et la température extérieure -5°C .

Exercice 4

Un gramme d'hydrate de carbon libère 4.1 kcal, s'il est brûlé dans un calorimètre. On estime que dans le corps, 98% de cette énergie va dans les cellules et se dépose sous forme de graisse s'il n'est pas utilisé. Si un homme consomme 150 kcal/h en courant, pendant combien de temps doit-il courir pour brûler 100 g d'hydrate de carbon?

Exercice 5

Dans un chauffe-eau sans réservoir, l'eau est chauffée par une résistance immergée dans le flux. Exprimer la température de l'eau chaude sortant en fonction de la température de l'eau entrant, son débit et la puissance électrique du corps chauffant.